Slow Fibonacci Walks

Sam Spiro, UC San Diego.

Joint with Fan Chung and Ron Graham.

Slow Fibonacci Walks

Slow Fibonacci Walks

am interested in magic tricks whose explanation requires deep mathematics. The trick should be one that would actually appeal to a layman. An example is the following: the magician asks Alice to integers at hand. Then add the largest two again. Repeat this around ten times. Alice tells the magician her final number n. The magician then tells Alice the next number. This is done by computing $(1.61803398 \cdots) n$ and rounding to the nearest integer. The explanation is beyond the comprehension of a random mathematical layperson, but for a mathematician it is not very deep. Can anyone do better?

```
soft-question big-list popularization
```

community wiki
6 revs, 5 users 75\%
Richard Stanley

Slow Fibonacci Walks

Given positive integers a_{1}, a_{2}, we define the (a_{1}, a_{2})-Fibonacci walk to be the sequence $w_{k}=w_{k}\left(a_{1}, a_{2}\right)$ satisfying

$$
w_{1}=a_{1}, w_{2}=a_{2}, w_{k+2}=w_{k+1}+w_{k}
$$

For example, if $w_{k}=w_{k}(10,2)$, this gives the sequence

$$
10,2,12,14,26,40,66 \ldots
$$

Slow Fibonacci Walks

Given positive integers a_{1}, a_{2}, we define the (a_{1}, a_{2})-Fibonacci walk to be the sequence $w_{k}=w_{k}\left(a_{1}, a_{2}\right)$ satisfying

$$
w_{1}=a_{1}, w_{2}=a_{2}, w_{k+2}=w_{k+1}+w_{k} .
$$

For example, if $w_{k}=w_{k}(10,2)$, this gives the sequence

$$
10,2,12,14,26,40,66 \ldots
$$

We say that w_{k} is an n-Fibonacci walk if $w_{s}=n$ for some s. For example, the above w_{k} is a 40-Fibonacci walk.

Slow Fibonacci Walks

Does there exist an n-Fibonacci walk for all n ?

Slow Fibonacci Walks

Does there exist an n-Fibonacci walk for all n ? Yes, $w_{k}(x, n)$ is an n-Fibonacci walk for all x, which is kind of boring.

Slow Fibonacci Walks

Does there exist an n-Fibonacci walk for all n ? Yes, $w_{k}(x, n)$ is an n-Fibonacci walk for all x, which is kind of boring. To make things more interesting, we say that a sequence w_{k} is an n-slow Fibonacci walk if $w_{s}=n$ and s is as large as possible.

Slow Fibonacci Walks

Does there exist an n-Fibonacci walk for all n ? Yes, $w_{k}(x, n)$ is an n-Fibonacci walk for all x, which is kind of boring. To make things more interesting, we say that a sequence w_{k} is an n-slow Fibonacci walk if $w_{s}=n$ and s is as large as possible.
For example, the following are all 40-Fibonacci walks.

$$
\begin{aligned}
& 1024, \underline{40}, 1064 \ldots \\
& 8,8,16,24, \underline{40}, 64 \ldots \\
& 5,5,10,15,25, \underline{40}, 65 \ldots \\
& 10,2,12,14,26, \underline{40}, 66 \ldots
\end{aligned}
$$

However, the first two can't be slow (since the next two achieve 40 with $s=6)$, and one can verify that $w_{k}(5,5)$ and $w_{k}(10,2)$ are (the unique) 40-slow Fibonacci walks.

Slow Fibonacci Walks

We will say that a pair of positive integers (b, a) is n-good if $w_{k}(b, a)$ is an n-slow Fibonacci walks.

Slow Fibonacci Walks

We will say that a pair of positive integers (b, a) is n-good if $w_{k}(b, a)$ is an n-slow Fibonacci walks. Thus understanding n-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs?

Slow Fibonacci Walks

We will say that a pair of positive integers (b, a) is n-good if $w_{k}(b, a)$ is an n-slow Fibonacci walks. Thus understanding n-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define $s(n)$ to be the length of any n-slow walk.

Slow Fibonacci Walks

We will say that a pair of positive integers (b, a) is n-good if $w_{k}(b, a)$ is an n-slow Fibonacci walks. Thus understanding n-good pairs is equivalent to understanding slow Fibonacci walks. So what can we say about these pairs? Define $s(n)$ to be the length of any n-slow walk.

Lemma

$$
s(n)=2 \text { iff } n=1 \text {, in which case }(x, 1) \text { is a 1-good pair for all } x .
$$

$$
w_{3}(x, y)=x+y \geq 2, w_{3}(1, n-1)=n
$$

Slow Fibonacci Walks

Lemma

Assume $s(n)=s>2$. If (b, a) is n-good, then $a \leq b$.

Slow Fibonacci Walks

Lemma

Assume $s(n)=s>2$. If (b, a) is n-good, then $a \leq b$.
E.g. instead of

$$
4,10,14, \cdots
$$

Slow Fibonacci Walks

Lemma

Assume $s(n)=s>2$. If (b, a) is n-good, then $a \leq b$.
E.g. instead of

$$
4,10,14, \cdots
$$

we should start

$$
6,4,10,14, \cdots
$$

Slow Fibonacci Walks

Lemma

$w_{k}(b, a)=a f_{k-1}+b f_{k-2}$, with f_{k} the Fibonacci numbers.

Slow Fibonacci Walks

Lemma

$$
w_{k}(b, a)=a f_{k-1}+b f_{k-2}, \text { with } f_{k} \text { the Fibonacci numbers. }
$$

Lemma

Let $s=s(n)>2$. If (b, a) is n-good, then $\left(b^{\prime}, a^{\prime}\right)$ is n-good iff $a^{\prime}=a+k f_{s-2} \geq 1$ and $b^{\prime}=b-k f_{s-1} \geq 1$ for some k.

Slow Fibonacci Walks

Lemma

$$
w_{k}(b, a)=a f_{k-1}+b f_{k-2}, \text { with } f_{k} \text { the Fibonacci numbers. }
$$

Lemma

Let $s=s(n)>2$. If (b, a) is n-good, then $\left(b^{\prime}, a^{\prime}\right)$ is n-good iff $a^{\prime}=a+k f_{s-2} \geq 1$ and $b^{\prime}=b-k f_{s-1} \geq 1$ for some k.

For example, if we know $s(40)=6$ and $(10,2)$ is 40 -good, then so is $\left(10-k f_{5}, 2+k f_{4}\right)=(10-5 k, 2+3 k)$, which only makes sense if $k=0,1$.

Slow Fibonacci Walks

Lemma

$w_{k}(b, a)=a f_{k-1}+b f_{k-2}$, with f_{k} the Fibonacci numbers.

Lemma

Let $s=s(n)>2$. If (b, a) is n-good, then $\left(b^{\prime}, a^{\prime}\right)$ is n-good iff $a^{\prime}=a+k f_{s-2} \geq 1$ and $b^{\prime}=b-k f_{s-1} \geq 1$ for some k.

For example, if we know $s(40)=6$ and $(10,2)$ is 40 -good, then so is $\left(10-k f_{5}, 2+k f_{4}\right)=(10-5 k, 2+3 k)$, which only makes sense if $k=0,1$.

Proof.

By the above lemma, every n-good pair is a solution to the diophantine equation $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$, and the result follows since $\operatorname{gcd}\left(f_{s-1}, f_{s-2}\right)=1$ for $s>2$.

Slow Fibonacci Walks

Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Slow Fibonacci Walks

> Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Because $w_{k}(x, y)=y f_{k-1}+x f_{k-2}$, by definition of s there exist a^{\prime}, b^{\prime} such that $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$.

Slow Fibonacci Walks

> Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Because $w_{k}(x, y)=y f_{k-1}+x f_{k-2}$, by definition of s there exist a^{\prime}, b^{\prime} such that $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$. Let k be such that $1 \leq b^{\prime}-k f_{s-1} \leq f_{s-1}$.

Slow Fibonacci Walks

> Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Because $w_{k}(x, y)=y f_{k-1}+x f_{k-2}$, by definition of s there exist a^{\prime}, b^{\prime} such that $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$. Let k be such that $1 \leq b^{\prime}-k f_{s-1} \leq f_{s-1}$. Then $(b, a):=\left(b^{\prime}-k f_{s-1}, a^{\prime}+k f_{s-2}\right)$ is n-good.

Slow Fibonacci Walks

> Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Because $w_{k}(x, y)=y f_{k-1}+x f_{k-2}$, by definition of s there exist a^{\prime}, b^{\prime} such that $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$. Let k be such that $1 \leq b^{\prime}-k f_{s-1} \leq f_{s-1}$. Then $(b, a):=\left(b^{\prime}-k f_{s-1}, a^{\prime}+k f_{s-2}\right)$ is n-good. Thus $a \leq b$, and we have $b \leq f_{s-1}$ by construction.

Slow Fibonacci Walks

> Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998); Chung, Graham, S. (2019))

For $n>1$ with $s=s(n)$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a f_{s-1}+b f_{s-2}$ and $1 \leq a \leq b \leq f_{s-1}$. In this case (b, a) is n-good.

Because $w_{k}(x, y)=y f_{k-1}+x f_{k-2}$, by definition of s there exist a^{\prime}, b^{\prime} such that $n=w_{s}\left(b^{\prime}, a^{\prime}\right)=a^{\prime} f_{s-1}+b^{\prime} f_{s-2}$. Let k be such that $1 \leq b^{\prime}-k f_{s-1} \leq f_{s-1}$. Then $(b, a):=\left(b^{\prime}-k f_{s-1}, a^{\prime}+k f_{s-2}\right)$ is n-good. Thus $a \leq b$, and we have $b \leq f_{s-1}$ by construction. Hence such integers exist, and it's not too hard to prove uniqueness.

Applications

Applications

Let $p(n)$ denote the number of n-good pairs.

Applications

Let $p(n)$ denote the number of n-good pairs.
Corollary
$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Applications

Let $p(n)$ denote the number of n-good pairs.
Corollary
$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem.

Applications

Let $p(n)$ denote the number of n-good pairs.
Corollary
$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form

$$
\left(b^{\prime}, a^{\prime}\right)=\left(b+k f_{s-1}, a-k f_{s-2}\right)
$$

for some k such that $b^{\prime}, a^{\prime} \geq 1$.

Applications

Let $p(n)$ denote the number of n-good pairs.
Corollary
$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form

$$
\left(b^{\prime}, a^{\prime}\right)=\left(b+k f_{s-1}, a-k f_{s-2}\right)
$$

for some k such that $b^{\prime}, a^{\prime} \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b^{\prime} \geq 1$.

Applications

Let $p(n)$ denote the number of n-good pairs.
Corollary
$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form

$$
\left(b^{\prime}, a^{\prime}\right)=\left(b+k f_{s-1}, a-k f_{s-2}\right)
$$

for some k such that $b^{\prime}, a^{\prime} \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b^{\prime} \geq 1$. Because $a \leq f_{s-1} \leq 2 f_{s-2}$, we need $k \leq 1$.

Applications

Let $p(n)$ denote the number of n-good pairs.

Corollary

$p(n) \leq 2$ for $n>1$, with equality iff $a(n)>f_{s-2}$

Proof.

Let $1 \leq a \leq b \leq f_{s-1}$ be as in the previous theorem. Recall that every n-good pair is of the form

$$
\left(b^{\prime}, a^{\prime}\right)=\left(b+k f_{s-1}, a-k f_{s-2}\right)
$$

for some k such that $b^{\prime}, a^{\prime} \geq 1$. Because $b \leq f_{s-1}$, we need $k \geq 0$ to have $b^{\prime} \geq 1$. Because $a \leq f_{s-1} \leq 2 f_{s-2}$, we need $k \leq 1$. Thus only the pairs with $k=0,1$ can work, and these both work iff $a>f_{s-2}$.

Applications

Let $T(n)=n^{-1} \mid\{m \leq n: m$ has two m-slow Fibonacci walks $\} \mid$.

Applications

Let $T(n)=n^{-1} \mid\{m \leq n: m$ has two m-slow Fibonacci walks $\} \mid$.

Theorem (Chung, Graham, S. (2019))

Given n, let c, p be such that $n=\frac{1}{\sqrt{5}} c \phi^{p}$ with $\frac{1}{\sqrt{5}} \leq c<\frac{1}{\sqrt{5}} \phi$.
Then

$$
T(n)=\left\{\begin{array}{lll}
\frac{1}{2 \sqrt{5} \phi^{4} c}+O\left(n^{-1 / 2}\right) & p \equiv 1 \bmod 2, \\
\frac{\sqrt{5}}{2} c+\frac{1+\phi^{-5}}{2 \sqrt{5} c}-1+O\left(n^{-1 / 2}\right) & p \equiv 0 \bmod 2, c \leq \frac{1+\phi^{-3}}{\sqrt{5}} \\
1-\frac{\sqrt{5}}{2} \phi^{-1} c-\frac{1+\phi^{-2}}{2 \sqrt{5} c}+O\left(n^{-1 / 2}\right) & p \equiv 0 \bmod 2, c \geq \frac{1+\phi^{-3}}{\sqrt{5}}
\end{array}\right.
$$

Applications

(a) Data plot of $T(n)$.

(b) Theory plot of $T(n)$.

Note that this value oscillates.

Applications

Proof Sketch:

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs.

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
a f_{s-1}+b f_{s-2}=m \leq n
$$

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{aligned}
& a f_{s-1}+b f_{s-2}=m \leq n \\
& f_{s-1} \geq b \geq a
\end{aligned}
$$

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

If s is very small compared to n, then any triple (s, a, b) with $f_{s-1} \geq b \geq a>f_{s-2}$ works (and this is easy to count).

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

If s is very small compared to n, then any triple (s, a, b) with $f_{s-1} \geq b \geq a>f_{s-2}$ works (and this is easy to count). Namely, this holds if $n \geq f_{s-1}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-1}$.

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

If s is very small compared to n, then any triple (s, a, b) with $f_{s-1} \geq b \geq a>f_{s-2}$ works (and this is easy to count). Namely, this holds if $n \geq f_{s-1}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-1}$. If s is very large, then no triple (s, a, b) satisfies both inequalities, so no triples exist.

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

If s is very small compared to n, then any triple (s, a, b) with $f_{s-1} \geq b \geq a>f_{s-2}$ works (and this is easy to count). Namely, this holds if $n \geq f_{s-1}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-1}$. If s is very large, then no triple (s, a, b) satisfies both inequalities, so no triples exist. Namely, this holds if $n<f_{s-2}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-2}$ then no such a, b exist.

Applications

Proof Sketch: Don't count $m \leq n$ which have two pairs, instead count triples $(s(m), a(m), b(m))=(s, a, b)$ where m has two pairs. These are exactly the triples satisfying

$$
\begin{gathered}
a f_{s-1}+b f_{s-2}=m \leq n \\
f_{s-1} \geq b \geq a>f_{s-2}
\end{gathered}
$$

If s is very small compared to n, then any triple (s, a, b) with $f_{s-1} \geq b \geq a>f_{s-2}$ works (and this is easy to count). Namely, this holds if $n \geq f_{s-1}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-1}$. If s is very large, then no triple (s, a, b) satisfies both inequalities, so no triples exist. Namely, this holds if $n<f_{s-2}\left(f_{s-1}+f_{s-2}\right) \approx \frac{1}{5} \phi^{2 s-2}$ then no such a, b exist. If n is in between these two values then things are annoying but doable.

Applications

From now on whenever I write w_{k} I'm assuming it's the n-slow Fibonacci walk $w_{k}(b(n), a(n))$.

Applications

From now on whenever I write w_{k} I'm assuming it's the n-slow Fibonacci walk $w_{k}(b(n), a(n))$.

Corollary

For any n with $s(n)=s>2$, we have $w_{s+1}=\lfloor\phi n\rfloor$ if s is odd and $w_{s+1}=\lceil\phi n\rceil$ if s is even.

Applications

From now on whenever I write w_{k} I'm assuming it's the n-slow Fibonacci walk $w_{k}(b(n), a(n))$.

Corollary

For any n with $s(n)=s>2$, we have $w_{s+1}=\lfloor\phi n\rfloor$ if s is odd and $w_{s+1}=\lceil\phi n\rceil$ if s is even.

Observe that $w_{s+1}(b, a)=\lfloor\phi n\rfloor$ is equivalent to

$$
0 \leq \phi n-w_{s+1}(b, a)<1
$$

Applications

From now on whenever I write w_{k} I'm assuming it's the n-slow Fibonacci walk $w_{k}(b(n), a(n))$.

Corollary

For any n with $s(n)=s>2$, we have $w_{s+1}=\lfloor\phi n\rfloor$ if s is odd and $w_{s+1}=\lceil\phi n\rceil$ if s is even.

Observe that $w_{s+1}(b, a)=\lfloor\phi n\rfloor$ is equivalent to

$$
0 \leq \phi n-w_{s+1}(b, a)<1
$$

By using $n=w_{s}(b, a)$ and writing w_{k} in terms of Fibonacci numbers, this is equivalent to

$$
0 \leq(-\phi)^{-s+1}(\phi b-a)<1 .
$$

Applications

From now on whenever I write w_{k} I'm assuming it's the n-slow Fibonacci walk $w_{k}(b(n), a(n))$.

Corollary

For any n with $s(n)=s>2$, we have $w_{s+1}=\lfloor\phi n\rfloor$ if s is odd and $w_{s+1}=\lceil\phi n\rceil$ if s is even.

Observe that $w_{s+1}(b, a)=\lfloor\phi n\rfloor$ is equivalent to

$$
0 \leq \phi n-w_{s+1}(b, a)<1
$$

By using $n=w_{s}(b, a)$ and writing w_{k} in terms of Fibonacci numbers, this is equivalent to

$$
0 \leq(-\phi)^{-s+1}(\phi b-a)<1 .
$$

This is true when s is odd for $1 \leq a \leq b \leq f_{t}$.

Applications

We say that n is a down-integer if $w_{s+1}=\lfloor\phi n\rfloor$, and we define D to be the set of down-integers.

Applications

We say that n is a down-integer if $w_{s+1}=\lfloor\phi n\rfloor$, and we define D to be the set of down-integers. Let $D(n)=n^{-1}|D \cap[n]|$.

Applications

We say that n is a down-integer if $w_{s+1}=\lfloor\phi n\rfloor$, and we define D to be the set of down-integers. Let $D(n)=n^{-1}|D \cap[n]|$.

Theorem (Chung, Graham, S. (2019))

$$
D(n)= \begin{cases}\frac{\sqrt{5} n}{2 \phi^{q+1}}+\frac{\phi^{q+1}}{10 \sqrt{5} n}+O\left(n^{-1 / 2}\right) & \frac{1}{5} \phi^{q} \leq n<\frac{1}{5} \phi^{q+2}, q \equiv 1 \bmod 4, \\ 1-\frac{\sqrt{5} n}{2 \phi^{q+1}}-\frac{\phi^{q+1}}{10 \sqrt{5} n}+O\left(n^{-1 / 2}\right) & \frac{1}{5} \phi^{q} \leq n<\frac{1}{5} \phi^{q+2}, q \equiv 3 \bmod 4 .\end{cases}
$$

Applications

We say that n is a down-integer if $w_{s+1}=\lfloor\phi n\rfloor$, and we define D to be the set of down-integers. Let $D(n)=n^{-1}|D \cap[n]|$.

Theorem (Chung, Graham, S. (2019))

$$
D(n)=\left\{\begin{array}{lll}
\frac{\sqrt{5} n}{2 \phi^{q+1}}+\frac{\phi^{q+1}}{10 \sqrt{5} n}+O\left(n^{-1 / 2}\right) & \frac{1}{5} \phi^{q} \leq n<\frac{1}{5} \phi^{q+2}, q \equiv 1 & \bmod 4, \\
1-\frac{\sqrt{5} n}{2 \phi^{q+1}}-\frac{\phi^{q+1}}{10 \sqrt{5} n}+O\left(n^{-1 / 2}\right) & \frac{1}{5} \phi^{q} \leq n<\frac{1}{5} \phi^{q+2}, q \equiv 3 & \bmod 4 .
\end{array}\right.
$$

Proof.

Count triples (s, a, b) with s odd.

Applications

(a) Data plot of $D(n)$.

(b) Theory plot of $D(n)$.

Applications

We know that $w_{s+1}=\lfloor\phi n\rfloor$ or $w_{s+1}=\lceil\phi n\rceil$. Intuitively, the smaller $\phi n-\lfloor\phi n\rfloor$ is, the more likely it is that $w_{s+1}=\lfloor\phi n\rfloor$.

Applications

We know that $w_{s+1}=\lfloor\phi n\rfloor$ or $w_{s+1}=\lceil\phi n\rceil$. Intuitively, the smaller $\phi n-\lfloor\phi n\rfloor$ is, the more likely it is that $w_{s+1}=\lfloor\phi n\rfloor$. To this end, we say that n is r-paradoxical if $\left|\phi n-w_{s+1}\right|>r$.

Applications

We know that $w_{s+1}=\lfloor\phi n\rfloor$ or $w_{s+1}=\lceil\phi n\rceil$. Intuitively, the smaller $\phi n-\lfloor\phi n\rfloor$ is, the more likely it is that $w_{s+1}=\lfloor\phi n\rfloor$. To this end, we say that n is r-paradoxical if $\left|\phi n-w_{s+1}\right|>r$. For $r \geq \frac{1}{2}$, let $P(n, r)=n^{-1} \mid\{m \leq n: m$ is r-paradoxical $\} \mid$.

Applications

We know that $w_{s+1}=\lfloor\phi n\rfloor$ or $w_{s+1}=\lceil\phi n\rceil$. Intuitively, the smaller $\phi n-\lfloor\phi n\rfloor$ is, the more likely it is that $w_{s+1}=\lfloor\phi n\rfloor$. To this end, we say that n is r-paradoxical if $\left|\phi n-w_{s+1}\right|>r$. For $r \geq \frac{1}{2}$, let $P(n, r)=n^{-1} \mid\{m \leq n: m$ is r-paradoxical $\} \mid$.
Theorem (Chung, Graham, S. (2019))
We have $P(n, r)=0$ if $r \geq 1-\frac{1}{\sqrt{5}} \phi^{-1} \approx .72$.

Applications

We know that $w_{s+1}=\lfloor\phi n\rfloor$ or $w_{s+1}=\lceil\phi n\rceil$. Intuitively, the smaller $\phi n-\lfloor\phi n\rfloor$ is, the more likely it is that $w_{s+1}=\lfloor\phi n\rfloor$. To this end, we say that n is r-paradoxical if $\left|\phi n-w_{s+1}\right|>r$. For $r \geq \frac{1}{2}$, let $P(n, r)=n^{-1} \mid\{m \leq n: m$ is r-paradoxical $\} \mid$.

Theorem (Chung, Graham, S. (2019))

We have $P(n, r)=0$ if $r \geq 1-\frac{1}{\sqrt{5}} \phi^{-1} \approx .72$. Otherwise, given n, let c, p be such that $n=\frac{1}{\sqrt{5}} c \phi^{p}$ with $\frac{1}{\sqrt{5}} \leq c<\frac{1}{\sqrt{5}} \phi$. Then $P(n, r)$ satisfies

$$
\begin{cases}-\frac{1}{2} \phi^{-1} c+(1-r)+\left(r^{2}-r+\frac{1}{2 \sqrt{5}} \phi^{-1}\right) c^{-1}+O\left(n^{-1 / 2}\right) & p \text { odd, } c \leq(1-r) \phi \\ \frac{\sqrt{5}}{2} \phi\left(r-\frac{1}{\sqrt{5}} \phi\right)^{2} c^{-1}+O\left(n^{-1 / 2}\right) & p \text { odd, } c \geq(1-r) \phi \\ -\frac{1}{2} c+(1-r)+\left(\phi^{-1} r^{2}-\phi^{-1} r+\frac{1}{2 \sqrt{5}} \phi^{-2}\right) c^{-1}+O\left(n^{-1 / 2}\right) & p \text { even, } c \leq 1-r \\ \frac{\sqrt{5}}{2}\left(r-\frac{1}{\sqrt{5}} \phi\right)^{2} c^{-1}+O\left(n^{-1 / 2}\right) & p \text { even, } 1-r \leq c \leq r \\ \frac{1}{2} c-r+\left(\phi r^{2}-\phi r+\frac{1}{2 \sqrt{5}} \phi^{2}\right) c^{-1}+O\left(n^{-1 / 2}\right) & p \text { even, } c \geq r\end{cases}
$$

Applications

(a) Data plot of $P(n, .5)$.

(c) Data plot of $P(n, 6)$.

(b) Theory plot of $P(n, .5)$.

(d) Theory plot of $P(n, 6)$.

Applications

How does one compute $a(n), b(n)$ in practice?

Applications

How does one compute $a(n), b(n)$ in practice?

- $O\left(n^{2} \log (n)\right)$ algorithm: Try every walk starting a, b, \ldots with $a, b \leq n$, pick the pair(s) giving you the slowest walk.

Applications

How does one compute $a(n), b(n)$ in practice?
■ $O\left(n^{2} \log (n)\right)$ algorithm: Try every walk starting a, b, \ldots with $a, b \leq n$, pick the pair(s) giving you the slowest walk.

- $O(n \log (n))$ algorithm: Try every "reverse walk" ending with \ldots, x, n for $x \leq n$ and pick the slowest ones.

Applications

How does one compute $a(n), b(n)$ in practice?

- $O\left(n^{2} \log (n)\right)$ algorithm: Try every walk starting a, b, \ldots with $a, b \leq n$, pick the pair(s) giving you the slowest walk.
- $O(n \log (n))$ algorithm: Try every "reverse walk" ending with \ldots, x, n for $x \leq n$ and pick the slowest ones.
- $O(\log n)$ algorithm: We know the "standard" slow walk goes
$\ldots, n,\lfloor\phi n\rfloor$ or $\ldots, n,\lceil\phi n\rceil$.

Applications

How does one compute $a(n), b(n)$ in practice?

- $O\left(n^{2} \log (n)\right)$ algorithm: Try every walk starting a, b, \ldots with $a, b \leq n$, pick the pair(s) giving you the slowest walk.
■ $O(n \log (n))$ algorithm: Try every "reverse walk" ending with \ldots, x, n for $x \leq n$ and pick the slowest ones.
- $O(\log n)$ algorithm: We know the "standard" slow walk goes $\ldots, n,\lfloor\phi n\rfloor$ or $\ldots, n,\lceil\phi n\rceil$. Thus we just have to check these two reverse walks.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

The Fibonacci sequence isn't special.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

The Fibonacci sequence isn't special. To this end, we define an n-slow (α, β)-walks to be a sequence with $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$ such that $w_{s}=n$ with s as large as possible.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

The Fibonacci sequence isn't special. To this end, we define an n-slow (α, β)-walks to be a sequence with $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$ such that $w_{s}=n$ with s as large as possible. Throughout we assume $\alpha, \beta \geq 1$ and that $\operatorname{gcd}(\alpha, \beta)=1$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

The Fibonacci sequence isn't special. To this end, we define an n-slow (α, β)-walks to be a sequence with $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$ such that $w_{s}=n$ with s as large as possible. Throughout we assume $\alpha, \beta \geq 1$ and that $\operatorname{gcd}(\alpha, \beta)=1$.
Define g_{k} to be the sequence with

$$
g_{1}=1, g_{2}=\alpha, g_{k+2}=\alpha g_{k+1}+\beta g_{k}
$$

Also define

$$
\gamma=\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}+4 \beta}\right), \lambda=\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}+4 \beta}\right) .
$$

Note that when $\alpha=\beta=1$ we have $g_{k}=f_{k}, \gamma=\phi, \lambda=-\phi^{-1}$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Theorem (S. (2019))

If $s(n)>2$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+\beta b g_{s-2}$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Theorem (S. (2019))

If $s(n)>2$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+\beta b g_{s-2}, b \leq g_{s-1}$,

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Theorem (S. (2019))

If $s(n)>2$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+\beta b g_{s-2}, b \leq g_{s-1}, 1 \leq a \leq \alpha b+(\beta-1) g_{s}$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Theorem (S. (2019))

If $s(n)>2$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+\beta b g_{s-2}, b \leq g_{s-1}, 1 \leq a \leq \alpha b+(\beta-1) g_{s}$, and $a-\alpha b-\ell g_{s}$ is not a positive multiple of β for any $\ell \geq 0$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

When $\beta=1$, almost all our proofs from before carry over. Let $s(n)=s^{\alpha, \beta}(n)$ be the number of steps it takes an n-slow (α, β)-walk to hit n.

Theorem (S. (2019))

If $s(n)>2$ and $\beta=1$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+b g_{s-2}$ and $1 \leq a \leq \alpha b \leq \alpha g_{s-1}$. Moreover, (b, a) is n-good and $w_{s+1}(b, a)$ is either $\lfloor\gamma n\rfloor$ or $\lceil\gamma n\rceil$.

When $\beta \neq 1$ things get a bit more complicated.

Theorem (S. (2019))

If $s(n)>2$, there exist unique integers $a=a(n), b=b(n)$ such that $n=a g_{s-1}+\beta b g_{s-2}, b \leq g_{s-1}, 1 \leq a \leq \alpha b+(\beta-1) g_{s}$, and $a-\alpha b-\ell g_{s}$ is not a positive multiple of β for any $\ell \geq 0$. Moreover, (b, a) is n-good and $\left|w_{s+1}(b, a)-\gamma n\right| \leq 2 \beta^{s}$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

As before we can use this theorem to prove a number of results about slow walks.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

As before we can use this theorem to prove a number of results about slow walks. Define $p(n)$ to be the number of n-slow (α, β)-walks.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

As before we can use this theorem to prove a number of results about slow walks. Define $p(n)$ to be the number of n-slow (α, β)-walks.

Theorem (S. (2019))

- If $s(n)>2$, then

$$
p(n) \leq \alpha^{2}+2 \beta-1 .
$$

Moreover, there always exists an n achieving this.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

As before we can use this theorem to prove a number of results about slow walks. Define $p(n)$ to be the number of n-slow (α, β)-walks.

Theorem (S. (2019))

- If $s(n)>2$, then

$$
p(n) \leq \alpha^{2}+2 \beta-1 .
$$

Moreover, there always exists an n achieving this.

- There exist infinitely many n with

$$
p(n)=\alpha^{2}+\beta+\left\lceil\alpha \beta \gamma^{-1}\right\rceil-1,
$$

and only finitely many n with

$$
p(n) \geq \alpha^{2}+\beta+\left\lceil\alpha \beta \gamma^{-1}\right\rceil .
$$

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

Let S_{p} denote the set of n with $p(n)>p$.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

Let S_{p} denote the set of n with $p(n)>p$.

Theorem (S. (2019))

Given an integer p, let d denote the smallest integer such that $\delta:=\beta \gamma^{-1} p-\gamma d \leq \alpha$. If $\beta \leq p \leq\left\lceil\gamma^{2}\right\rceil-2$ and
$1 \leq c \leq(p-\beta+1) \gamma / \alpha$, then
$n_{c, r}^{-1}\left|S_{p} \cap\left[n_{c, r}\right]\right|=c^{-1}\left(\frac{(2 \beta-2 d-1) \gamma\left(\alpha-2 \delta+\alpha^{-1} \delta^{2}\right)}{2 \beta^{2}\left(\gamma^{2}-1\right)}+\frac{\gamma^{2}}{\gamma^{2}-1} \sum_{q=d+1}^{\beta-1} \frac{\beta-q}{\beta^{2}}\right)+O\left(\gamma^{-r}+\left(\beta \gamma^{-2}\right)^{r}\right)$,
where $n_{c, r}:=\left\lfloor\frac{c \beta}{(\gamma-\lambda)^{2}} 2^{2 r+1}\right\rfloor$.
When $\beta=1$ the proof is essentially the same as before, otherwise one has to be careful about the divisibility condition.

Generalized Walks: $w_{k+2}=\alpha w_{k+1}+\beta w_{k}$

$$
\alpha=2, \beta=1, \quad p=1,2,3,4 .
$$

Slowest Slow Walks

Slowest Slow Walks

How slow is the slowest slow walk?

Slowest Slow Walks

How slow is the slowest slow walk? Define $s(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=s(n)\right\}$.

Slowest Slow Walks

How slow is the slowest slow walk? Define $s(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=s(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n.

Slowest Slow Walks

How slow is the slowest slow walk? Define $s(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Slowest Slow Walks

How slow is the slowest slow walk? Define $\mathrm{s}(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

```
Theorem (S. (2019))
Let R={(1,1),(1, 2),(1,3),(2,1),(1,4)}.
    ■ For all n> 1, we have S(n)\subseteqR.
```


Slowest Slow Walks

How slow is the slowest slow walk? Define $s(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=s(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019))

Let $R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$.

- For all $n>1$, we have $\mathrm{S}(n) \subseteq R$.
- For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$.

Slowest Slow Walks

How slow is the slowest slow walk? Define $s(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019))

Let $R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$.

- For all $n>1$, we have $\mathrm{S}(n) \subseteq R$.
- For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$.
- The set of n with $S(n)=\{(1,1)\}$ has density 1 .

Slowest Slow Walks

How slow is the slowest slow walk? Define $\mathrm{s}(n)=\max _{(\alpha, \beta)} s^{\alpha, \beta}(n)$, as well as the pairs achieving this $\mathrm{S}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}(n)\right\}$. A priori, any pair (α, β) could be an element of $S(n)$ for some n. However, it turns out that only a finite number of pairs have this property.

Theorem (S. (2019))

Let $R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$.

- For all $n>1$, we have $\mathrm{S}(n) \subseteq R$.
- For all $(\alpha, \beta) \in R$, there exists an n with $(\alpha, \beta) \in S(n)$.
- The set of n with $S(n)=\{(1,1)\}$ has density 1 .

Corollary: the Fibonacci sequence is special!

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Can you find n with $S(n)=\{(\alpha, \beta)\}$?

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Can you find n with $S(n)=\{(\alpha, \beta)\}$?

$$
S(171)=\{(1,2)\}
$$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Can you find n with $S(n)=\{(\alpha, \beta)\}$?

$$
S(171)=\{(1,2)\}, S(11228332)=\{(1,3)\}
$$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Can you find n with $S(n)=\{(\alpha, \beta)\}$?

$$
S(171)=\{(1,2)\}, S(11228332)=\{(1,3)\}, S(22619537)=\{(2,1)\}
$$

Slowest Slow Walks

First we show any $(\alpha, \beta) \in R=\{(1,1),(1,2),(1,3),(2,1),(1,4)\}$ is an element of some $S(n)$ set.
$S(32)=\{(1,1),(1,2)\}, S(40)=\{(1,1),(1,3)\}, S(3363)=\{(1,1),(2,1)\}$,

$$
S(5307721328585529)=\{(1,1),(1,4)\} .
$$

Can you find n with $S(n)=\{(\alpha, \beta)\}$?

$$
S(171)=\{(1,2)\}, S(11228332)=\{(1,3)\}, S(22619537)=\{(2,1)\},\}
$$

$S(5000966512101628011743180761388223)=\{(1,4)\}$.

Slowest Slow Walks

For the rest of the proof we consider a more general setting: given a set of relatively prime pairs T, define $\mathrm{s}_{T}(n)=\max _{(\alpha, \beta) \in T} s^{\alpha, \beta}(n), \mathrm{S}_{T}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}_{T}(n)\right\}$.

Slowest Slow Walks

For the rest of the proof we consider a more general setting: given a set of relatively prime pairs T, define $\mathrm{s}_{T}(n)=\max _{(\alpha, \beta) \in T} \mathrm{~s}^{\alpha, \beta}(n), \mathrm{S}_{T}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}_{T}(n)\right\}$.

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Slowest Slow Walks

For the rest of the proof we consider a more general setting: given a set of relatively prime pairs T, define $\mathrm{s}_{T}(n)=\max _{(\alpha, \beta) \in T} s^{\alpha, \beta}(n), \mathrm{S}_{T}(n)=\left\{(\alpha, \beta): s^{\alpha, \beta}(n)=\mathrm{s}_{T}(n)\right\}$.

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Lemma

For all n with $s^{\alpha, \beta}(n)>2$, we have

$$
\frac{1}{2} \log _{\gamma}(n)-1 \leq s^{\alpha, \beta}(n) \leq \log _{\gamma}(n)+2 .
$$

The two extreme cases are $n=g_{s-1}+\beta g_{s-2} \approx \gamma^{s}$ and $n=\beta g_{s-1} g_{s} \approx \gamma^{2 s}$.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)
$$

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n)
$$

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n)
$$

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1
$$

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1>\frac{1}{4} \log _{\Gamma} n+2 .
$$

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1>\frac{1}{4} \log _{\Gamma} n+2 .
$$

In particular this implies $\log _{\Gamma} \gamma<4$.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1>\frac{1}{4} \log _{\Gamma} n+2 .
$$

In particular this implies $\log _{\Gamma} \gamma<4$. Since $\gamma_{\alpha, \beta}$ is monotonically increasing in α and β, the set $R_{T}=\left\{(\alpha, \beta): \log _{\Gamma} \gamma_{\alpha, \beta}<4\right\} \cap T$ is finite.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1>\frac{1}{4} \log _{\Gamma} n+2 .
$$

In particular this implies $\log _{\Gamma} \gamma<4$. Since $\gamma_{\alpha, \beta}$ is monotonically increasing in α and β, the set $R_{T}=\left\{(\alpha, \beta): \log _{\Gamma} \gamma_{\alpha, \beta}<4\right\} \cap T$ is finite.

If T is every pair, then the only pairs which could be in R are those with $\log _{\phi} \gamma<2$.

Slowest Slow Walks

Theorem (S. (2019))

There exists a finite set R_{T} and number n_{T} such that $S_{T}(n) \subseteq R_{T}$ for all $n \geq n_{T}$.

Proof.

Let $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ such that $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min \left\{\gamma_{\alpha, \beta}:(\alpha, \beta) \in T\right\}:=\Gamma$. If $(\alpha, \beta) \in \mathrm{S}_{T}(n)$ and $\gamma:=\gamma_{\alpha, \beta}$, then

$$
\log _{\gamma} n+2 \geq s^{\alpha, \beta}(n)=s_{T}(n) \geq s^{\alpha^{\prime}, \beta^{\prime}}(n) \geq \frac{1}{2} \log _{\Gamma} n-1>\frac{1}{4} \log _{\Gamma} n+2 .
$$

In particular this implies $\log _{\Gamma} \gamma<4$. Since $\gamma_{\alpha, \beta}$ is monotonically increasing in α and β, the set $R_{T}=\left\{(\alpha, \beta): \log _{\Gamma} \gamma_{\alpha, \beta}<4\right\} \cap T$ is finite.

If T is every pair, then the only pairs which could be in R are those with $\log _{\phi} \gamma<2$. For $(1,4)$ we have $\log _{\phi} \gamma \approx 1.95$, so it just barely works!

Slowest Slow Walks

Theorem

If T is such that there exists a unique pair $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ with $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min _{(\alpha, \beta)} \gamma_{\alpha, \beta}$, then almost every n has $S_{T}(n)=\left\{\left(\alpha^{\prime}, \beta^{\prime}\right)\right\}$.

Slowest Slow Walks

Theorem

If T is such that there exists a unique pair $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ with $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min _{(\alpha, \beta)} \gamma_{\alpha, \beta}$, then almost every n has $S_{T}(n)=\left\{\left(\alpha^{\prime}, \beta^{\prime}\right)\right\}$.

What if there isn't such a unique pair?

Slowest Slow Walks

Theorem

If T is such that there exists a unique pair $\left(\alpha^{\prime}, \beta^{\prime}\right) \in T$ with $\gamma_{\alpha^{\prime}, \beta^{\prime}}=\min _{(\alpha, \beta)} \gamma_{\alpha, \beta}$, then almost every n has $S_{T}(n)=\left\{\left(\alpha^{\prime}, \beta^{\prime}\right)\right\}$.

What if there isn't such a unique pair? For example, if
$T=\{(1,6),(2,3)\}$ we have $\gamma_{1,6}=\gamma_{2,3}=3$.

Slowest Slow Walks

Here the open black circles are $e_{2,3}(n)$ and the solid blue dots are $e_{1,6}(n)$.

Open Problems

- Why do $(2,3)$-walks tend to be slower than $(1,6)$-walks?

Open Problems

- Why do $(2,3)$-walks tend to be slower than $(1,6)$-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$?

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$? For example, do there exist infinitely many n for which $(1,2)$ is an element of $S(n)$?

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$? For example, do there exist infinitely many n for which $(1,2)$ is an element of $S(n)$? Does there exist an n with $|S(n)|>2$?

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$? For example, do there exist infinitely many n for which $(1,2)$ is an element of $S(n)$? Does there exist an n with $|S(n)|>2$?
■ What happens with slow Tribonacci walks, i.e.

$$
w_{k+3}=w_{k+2}+w_{k+1}+w_{k} ?
$$

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$? For example, do there exist infinitely many n for which $(1,2)$ is an element of $S(n)$? Does there exist an n with $|S(n)|>2$?
■ What happens with slow Tribonacci walks, i.e.
$w_{k+3}=w_{k+2}+w_{k+1}+w_{k}$?
■ What happens if you require a slow walk to hit two prescribed numbers n_{1} and n_{2} ?

Open Problems

- Why do $(2,3)$-walks tend to be slower than (1, 6)-walks? Note that in general, $g_{s}^{2,3}>g_{s}^{1,6}$, which intuitively should make them faster.
- Can you say anything more about how often each set appears in $S_{T}(n)$? For example, do there exist infinitely many n for which $(1,2)$ is an element of $S(n)$? Does there exist an n with $|S(n)|>2$?
■ What happens with slow Tribonacci walks, i.e.
$w_{k+3}=w_{k+2}+w_{k+1}+w_{k}$?
■ What happens if you require a slow walk to hit two prescribed numbers n_{1} and n_{2} ? Note that $w_{1}=n_{1}, w_{2}=n_{2}$ works, so this is well defined.

The End

Thank You!

