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Slow Fibonacci Walks

Given positive integers a1, a2, we define the (a1, a2)-Fibonacci walk
to be the sequence wk = wk(a1, a2) satisfying

w1 = a1, w2 = a2, wk+2 = wk+1 + wk .

For example, if wk = wk(10, 2), this gives the sequence

10, 2, 12, 14, 26, 40, 66 . . .

We say that wk is an n-Fibonacci walk if ws = n for some s. For
example, the above wk is a 40-Fibonacci walk.
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Slow Fibonacci Walks

Does there exist an n-Fibonacci walk for all n?

Yes, wk(x , n) is an
n-Fibonacci walk for all x , which is kind of boring. To make things
more interesting, we say that a sequence wk is an n-slow Fibonacci
walk if ws = n and s is as large as possible.
For example, the following are all 40-Fibonacci walks.

1024, 40, 1064 . . .

8, 8, 16, 24, 40, 64 . . .

5, 5, 10, 15, 25, 40, 65 . . .

10, 2, 12, 14, 26, 40, 66 . . .

However, the first two can’t be slow (since the next two achieve 40
with s = 6), and one can verify that wk(5, 5) and wk(10, 2) are
(the unique) 40-slow Fibonacci walks.
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Slow Fibonacci Walks

We will say that a pair of positive integers (b, a) is n-good if
wk(b, a) is an n-slow Fibonacci walks.

Thus understanding n-good
pairs is equivalent to understanding slow Fibonacci walks. So what
can we say about these pairs? Define s(n) to be the length of any
n-slow walk.

Lemma

s(n) = 2 iff n = 1, in which case (x , 1) is a 1-good pair for all x .

w3(x , y) = x + y ≥ 2, w3(1, n − 1) = n.
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Slow Fibonacci Walks

Lemma

Assume s(n) = s > 2. If (b, a) is n-good, then a ≤ b.

E.g. instead of
4, 10, 14, · · ·

we should start
6, 4, 10, 14, · · ·
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Slow Fibonacci Walks

Lemma

wk(b, a) = afk−1 + bfk−2, with fk the Fibonacci numbers.

Lemma

Let s = s(n) > 2. If (b, a) is n-good, then (b′, a′) is n-good iff
a′ = a + kfs−2 ≥ 1 and b′ = b − kfs−1 ≥ 1 for some k .

For example, if we know s(40) = 6 and (10, 2) is 40-good, then so
is (10− kf5, 2 + kf4) = (10− 5k , 2 + 3k), which only makes sense
if k = 0, 1.

Proof.

By the above lemma, every n-good pair is a solution to the
diophantine equation n = ws(b′, a′) = a′fs−1 + b′fs−2, and the
result follows since gcd(fs−1, fs−2) = 1 for s > 2.
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Theorem (Englund, Bicknell-Johnson (1997); Jones, Kiss (1998);
Chung, Graham, S. (2019))

For n > 1 with s = s(n), there exist unique integers a = a(n), b = b(n)

such that n = afs−1 + bfs−2 and 1 ≤ a ≤ b ≤ fs−1. In this case (b, a) is

n-good.

Because wk(x , y) = yfk−1 + xfk−2, by definition of s there exist
a′, b′ such that n = ws(b′, a′) = a′fs−1 + b′fs−2. Let k be such that
1 ≤ b′ − kfs−1 ≤ fs−1. Then (b, a) := (b′ − kfs−1, a

′ + kfs−2) is
n-good. Thus a ≤ b, and we have b ≤ fs−1 by construction. Hence
such integers exist, and it’s not too hard to prove uniqueness.
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Applications

Let p(n) denote the number of n-good pairs.

Corollary

p(n) ≤ 2 for n > 1, with equality iff a(n) > fs−2

Proof.

Let 1 ≤ a ≤ b ≤ fs−1 be as in the previous theorem. Recall that
every n-good pair is of the form

(b′, a′) = (b + kfs−1, a− kfs−2)

for some k such that b′, a′ ≥ 1. Because b ≤ fs−1, we need k ≥ 0
to have b′ ≥ 1. Because a ≤ fs−1 ≤ 2fs−2, we need k ≤ 1. Thus
only the pairs with k = 0, 1 can work, and these both work iff
a > fs−2.
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Let T (n) = n−1|{m ≤ n : m has two m-slow Fibonacci walks}|.

Theorem (Chung, Graham, S. (2019))

Given n, let c , p be such that n = 1√
5
cφp with 1√

5
≤ c < 1√

5
φ.

Then

T (n) =


1

2
√

5φ4c
+ O(n−1/2) p ≡ 1 mod 2,

√
5

2
c + 1+φ−5

2
√

5c
− 1 + O(n−1/2) p ≡ 0 mod 2, c ≤ 1+φ−3

√
5

,

1−
√

5
2
φ−1c − 1+φ−2

2
√

5c
+ O(n−1/2) p ≡ 0 mod 2, c ≥ 1+φ−3

√
5
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Applications

Note that this value oscillates.



Applications

Proof Sketch:

Don’t count m ≤ n which have two pairs, instead
count triples (s(m), a(m), b(m)) = (s, a, b) where m has two pairs.
These are exactly the triples satisfying

afs−1 + bfs−2 = m ≤ n,

fs−1 ≥ b ≥ a > fs−2.

If s is very small compared to n, then any triple (s, a, b) with
fs−1 ≥ b ≥ a > fs−2 works (and this is easy to count). Namely,
this holds if n ≥ fs−1(fs−1 + fs−2) ≈ 1

5φ
2s−1. If s is very large,

then no triple (s, a, b) satisfies both inequalities, so no triples exist.
Namely, this holds if n < fs−2(fs−1 + fs−2) ≈ 1

5φ
2s−2 then no such

a, b exist. If n is in between these two values then things are
annoying but doable.
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Applications

From now on whenever I write wk I’m assuming it’s the n-slow
Fibonacci walk wk(b(n), a(n)).

Corollary

For any n with s(n) = s > 2, we have ws+1 = bφnc if s is odd and
ws+1 = dφne if s is even.

Observe that ws+1(b, a) = bφnc is equivalent to

0 ≤ φn − ws+1(b, a) < 1.

By using n = ws(b, a) and writing wk in terms of Fibonacci
numbers, this is equivalent to

0 ≤ (−φ)−s+1(φb − a) < 1.

This is true when s is odd for 1 ≤ a ≤ b ≤ ft .
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Applications

We say that n is a down-integer if ws+1 = bφnc, and we define D
to be the set of down-integers.

Let D(n) = n−1|D ∩ [n]|.

Theorem (Chung, Graham, S. (2019))

D(n) =


√

5n
2φq+1 + φq+1

10
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+ O(n−1/2) 1

5
φq ≤ n < 1

5
φq+2, q ≡ 1 mod 4,
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φq ≤ n < 1

5
φq+2, q ≡ 3 mod 4.

Proof.

Count triples (s, a, b) with s odd.
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We know that ws+1 = bφnc or ws+1 = dφne. Intuitively, the
smaller φn − bφnc is, the more likely it is that ws+1 = bφnc.

To
this end, we say that n is r -paradoxical if |φn − ws+1| > r . For
r ≥ 1

2 , let P(n, r) = n−1|{m ≤ n : m is r−paradoxical}|.

Theorem (Chung, Graham, S. (2019))
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Applications

How does one compute a(n), b(n) in practice?

O(n2 log(n)) algorithm: Try every walk starting a, b, . . . with
a, b ≤ n, pick the pair(s) giving you the slowest walk.

O(n log(n)) algorithm: Try every “reverse walk” ending with
. . . , x , n for x ≤ n and pick the slowest ones.

O(log n) algorithm: We know the “standard” slow walk goes
. . . , n, bφnc or . . . , n, dφne. Thus we just have to check these
two reverse walks.
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Generalized Walks: wk+2 = αwk+1 + βwk

The Fibonacci sequence isn’t special. To this end, we define an
n-slow (α, β)-walks to be a sequence with wk+2 = αwk+1 + βwk

such that ws = n with s as large as possible. Throughout we
assume α, β ≥ 1 and that gcd(α, β) = 1.
Define gk to be the sequence with

g1 = 1, g2 = α, gk+2 = αgk+1 + βgk .

Also define

γ =
1

2
(α +

√
α2 + 4β), λ =

1

2
(α−

√
α2 + 4β).

Note that when α = β = 1 we have gk = fk , γ = φ, λ = −φ−1.
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Generalized Walks: wk+2 = αwk+1 + βwk

When β = 1, almost all our proofs from before carry over.

Let
s(n) = sα,β(n) be the number of steps it takes an n-slow
(α, β)-walk to hit n.

Theorem (S. (2019))

If s(n) > 2 and β = 1, there exist unique integers a = a(n), b = b(n)
such that n = ags−1 + bgs−2 and 1 ≤ a ≤ αb ≤ αgs−1. Moreover, (b, a)
is n-good and ws+1(b, a) is either bγnc or dγne.

When β 6= 1 things get a bit more complicated.

Theorem (S. (2019))

If s(n) > 2, there exist unique integers a = a(n), b = b(n) such that
n = ags−1 + βbgs−2, b ≤ gs−1, 1 ≤ a ≤ αb + (β − 1)gs , and
a− αb − `gs is not a positive multiple of β for any ` ≥ 0. Moreover,
(b, a) is n-good and |ws+1(b, a)− γn| ≤ 2βs .
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Generalized Walks: wk+2 = αwk+1 + βwk

As before we can use this theorem to prove a number of results
about slow walks.

Define p(n) to be the number of n-slow
(α, β)-walks.

Theorem (S. (2019))

If s(n) > 2, then
p(n) ≤ α2 + 2β − 1.

Moreover, there always exists an n achieving this.

There exist infinitely many n with

p(n) = α2 + β +
⌈
αβγ−1

⌉
− 1,

and only finitely many n with

p(n) ≥ α2 + β +
⌈
αβγ−1

⌉
.
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Generalized Walks: wk+2 = αwk+1 + βwk

Let Sp denote the set of n with p(n) > p.

Theorem (S. (2019))

Given an integer p, let d denote the smallest integer such that
δ := βγ−1p − γd ≤ α. If β ≤ p ≤

⌈
γ2
⌉
− 2 and

1 ≤ c ≤ (p − β + 1)γ/α, then

n−1
c,r |Sp ∩ [nc,r ]| = c−1

 (2β − 2d − 1)γ(α− 2δ + α−1δ2)

2β2(γ2 − 1)
+

γ2

γ2 − 1

β−1∑
q=d+1

β − q

β2

 + O(γ−r + (βγ−2)r ),

where nc,r :=
⌊

cβ
(γ−λ)2γ

2r+1
⌋
.

When β = 1 the proof is essentially the same as before, otherwise
one has to be careful about the divisibility condition.
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Generalized Walks: wk+2 = αwk+1 + βwk

α = 2, β = 1, p = 1, 2, 3, 4.



Slowest Slow Walks

How slow is the slowest slow walk? Define s(n) = max(α,β) s
α,β(n),

as well as the pairs achieving this S(n) = {(α, β) : sα,β(n) = s(n)}.
A priori, any pair (α, β) could be an element of S(n) for some n.
However, it turns out that only a finite number of pairs have this
property.

Theorem (S. (2019))

Let R = {(1, 1), (1, 2), (1, 3), (2, 1), (1, 4)}.
For all n > 1, we have S(n) ⊆ R.

For all (α, β) ∈ R, there exists an n with (α, β) ∈ S(n).

The set of n with S(n) = {(1, 1)} has density 1.

Corollary: the Fibonacci sequence is special!
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Slowest Slow Walks

First we show any (α, β) ∈ R = {(1, 1), (1, 2), (1, 3), (2, 1), (1, 4)}
is an element of some S(n) set.

S(32) = {(1, 1), (1, 2)}, S(40) = {(1, 1), (1, 3)}, S(3363) = {(1, 1), (2, 1)},

S(5307721328585529) = {(1, 1), (1, 4)}.

Can you find n with S(n) = {(α, β)}?

S(171) = {(1, 2)}, S(11228332) = {(1, 3)}, S(22619537) = {(2, 1)}, }

S(5000966512101628011743180761388223) = {(1, 4)}.
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Slowest Slow Walks

For the rest of the proof we consider a more general setting: given
a set of relatively prime pairs T , define
sT (n) = max(α,β)∈T sα,β(n), ST (n) = {(α, β) : sα,β(n) = sT (n)}.

Theorem (S. (2019))

There exists a finite set RT and number nT such that ST (n) ⊆ RT

for all n ≥ nT .

Lemma

For all n with sα,β(n) > 2, we have

1

2
logγ(n)− 1 ≤ sα,β(n) ≤ logγ(n) + 2.

The two extreme cases are n = gs−1 + βgs−2 ≈ γs and
n = βgs−1gs ≈ γ2s .
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Theorem (S. (2019))

There exists a finite set RT and number nT such that ST (n) ⊆ RT

for all n ≥ nT .

Proof.

Let (α′, β′) ∈ T such that γα′,β′ = min{γα,β : (α, β) ∈ T} := Γ. If
(α, β) ∈ ST (n) and γ := γα,β, then

logγ n + 2 ≥ sα,β(n) = sT (n) ≥ sα
′,β′(n) ≥ 1

2
logΓ n − 1 >

1

4
logΓ n + 2.

In particular this implies logΓ γ < 4. Since γα,β is monotonically
increasing in α and β, the set RT = {(α, β) : logΓ γα,β < 4} ∩ T is
finite.

If T is every pair, then the only pairs which could be in R are
those with logφ γ < 2. For (1,4) we have logφ γ ≈ 1.95, so it just
barely works!
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Theorem

If T is such that there exists a unique pair (α′, β′) ∈ T with
γα′,β′ = min(α,β) γα,β, then almost every n has ST (n) = {(α′, β′)}.

What if there isn’t such a unique pair? For example, if
T = {(1, 6), (2, 3)} we have γ1,6 = γ2,3 = 3.
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Slowest Slow Walks

Let eα,β(n) = n−1|{m : m ≤ n, ST (m) = {(α, β)}}| for
T = {(1, 6), (2, 3)}.

Here the open black circles are e2,3(n) and the solid blue dots are
e1,6(n).



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?

Note that in general, g2,3
s > g1,6

s , which intuitively should
make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)?

For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)?

Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2?

Note that w1 = n1, w2 = n2 works, so
this is well defined.



Open Problems

Why do (2, 3)-walks tend to be slower than (1, 6)-walks?
Note that in general, g2,3

s > g1,6
s , which intuitively should

make them faster.

Can you say anything more about how often each set appears
in ST (n)? For example, do there exist infinitely many n for
which (1, 2) is an element of S(n)? Does there exist an n with
|S(n)| > 2?

What happens with slow Tribonacci walks, i.e.
wk+3 = wk+2 + wk+1 + wk?

What happens if you require a slow walk to hit two prescribed
numbers n1 and n2? Note that w1 = n1, w2 = n2 works, so
this is well defined.



The End

Thank You!
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